CETIFICATION

SDG No:

SUMMARY:

MC45838A

Laboratory:

Accutest, Massachusetts

Site:

BMS, Building 5 Area, PR

Matrix:

Soil

Humacao, PR

Soil samples (Table 1) were collected on the BMSMC facility — Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 10, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC45838. Results were validated using the following quality control criteria of the methods employed (MADEP VPH and MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
MC45838-2	RA-20 (6.5-7.5)	Soil	Volatiles TPHC Ranges; Extractable TPHC Ranges

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

June 13, 2016

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA-20 (6.5-7.5) MC45838-2

File ID

SO - Soil

2,3,4-Trifluorotoluene

MADEP VPH REV 1-1

DF

1

Date Sampled: Date Received:

05/10/16 05/11/16

Analyzed

05/12/16

Percent Solids:

74.8

Project:

Matrix:

Method:

BMSMC, Building 5 Area, Puerto Rico

Prep Batch n/a

Analytical Batch GAB5168

Run #1 Run #2

Initial Weight

AB94041.D

Final Volume 16.0 ml

Methanol Aliquot

Prep Date

n/a

100 ul

Ву

AF

Run #1 Run #2 16.6 g

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.)	ND	8100	4100	ug/kg	
	C9- C12 Aliphatics (Unadj.)	ND	8100	4100	ug/kg	
	C9- C10 Aromatics (Unadj.)	ND	8100	4100	ug/kg	
	C5- C8 Aliphatics	ND	8100	4100	ug/kg	
	C9- C12 Aliphatics	ND	8100	4100	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene	89%		70-1	30%	

91%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

By

AP

05/18/16

Page 1 of 1

Client Sample ID: RA-20 (6.5-7.5) Lab Sample ID: MC45838-2

File ID

DE14343.D

Matrix: Method:

Project:

SO - Soil

MADEP EPH REV 1.1 SW846 3546 BMSMC, Building 5 Area, Puerto Rico

Analyzed

05/31/16

Date Sampled: Date Received:

OP47552

05/10/16 05/11/16

GDE801

Percent Solids: 74.8

Prep Date Prep Batch **Analytical Batch**

Run #1 Run #2

Run #1

Initial Weight 11.3 g

Final Volume $2.0 \, ml$

DF

1

Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.)	ND	24000	19000	ug/kg	
	C9-C18 Aliphatics	ND	12000	9500	ug/kg	
	C19-C36 Aliphatics	ND	12000	9500	ug/kg	
	C11-C22 Aromatics	ND	24000	19000	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 84-15-1	•	Run# 1 75%	Run# 2		its 40%	
	Surrogate Recoveries o-Terphenyl 2-Fluorobiphenyl		Run# 2	40-1		
84-15-1	o-Terphenyl	75%	Run# 2	40-1 40-1	40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS ACC	JTEST_N	CHAIN SGS 11237 ROBER TEL. 732-1239-020	OF C	USTOL New!	engler	d Ngelo MA	809°	16056967 1000	G	PAGE _	C45 838A
Anderson Mulhaland Association 12700 Westchester Purchase NY Terry Taylor	Chy Presci il	12000	As	50951	nenf		4				CW - Drinking Wates GW - Ground Water GW - Struct Water WY - Water SW - Surface Water DO - Bel SL - Sudge SED-Beckmen CI - Ob LIG - Green Ligant AR - As SCI - Other Stoper
V. Ricca, T. Tayler, V-Linette	Client Purchase Order 9 Proper Minneger Mildredor Vers 8 0	Calvestan Calvestan Stempt by			00 M	PACONI NOTINE	VMAVP				WP - What FB-F-mid Blanch EB-Equipment Blanch RB-Firmes Blanch TB-Tree Blanch LAB USE CAPLY
-/ 5-35 D -2 RA-20 (6.5-7.5) -3 S-41 D -7 S-42 D -5 RAG-6WS	5 / 5 / 5 / 5 /	1/16 1521 NI 10/16 1150 TY 10/16 11/18 IR 10/16 11/28 NI		5 5 5 5	3	3	X X X X X X X X				
RAG-GWS	5) 5)	9/16 1445 TT 1916 1950 TT	6W	3 3			X X X				10 DY 10 D 12A
Turnishord Time (Bearings, days)	Approved By (SS& Assumpt Pa		Commercial			ASP Campo	74		Comments/	Special traductions	361
Son, 18 Business Days For Soil Same Sony Rush 2 Day Rush 1 Day Rush 5 Day Rush 5 Day Rush 6 Day Rush 6 Day Rush 6 Day Rush 7 Day Rush 8 Day Rush 8 Day Rush 9 Day R	Plos T	25	Commercial FIRET1 (La IL) Reduced Commercial Att Date of I stal "A" = Rea	vel 3+4]		ASP Gategor de Ferme D: Fermel mr Mg de = QC Sure		LABEL	ASESSIVEN ERIFICATIO	77-	
	(6 500 1 1 1 1 1 1 1 1 1	edEX	ncis - Pireiti niow each ti	2 4	Hornel Row of the Forey	iron, lectual	and .	Sample invent	16 2	pon receipt in the	a Laboratory The

. . . .

MC45838A: Chain of Custody

e f - - -

Page 1 of 1

EXECUTIVE NARRATIVE

SDG No:

MC45838A

Laboratory:

Accutest, Massachusetts

Analysis:

MADEP VPH

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

One (1) sample was analyzed for Volatiles TPHC Ranges by method MADEP VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (VPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. % differences in the rt5.5-7 hydrocarbon range did not meet the method and guidance document performance criteria in the initial calibration verification. No action taken, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

June 13, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC45838-2

Sample location: BMSMC Building 5 Area

Sampling date: 5/10/2016 Matrix: Soil

METHOD: MADEP VPH

Ç9 - C12 Aliphatics	Ç5 - C8 Aliphatics	Ç9 - C10 Aromatics (Unadj.)	Ç9 - C12 Aliphatics (Unadj.)	Ç5 - C8 Aliphatics (Unadj.)	Analyte Name
8100	8100	8100	8100	8100	Result
ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	Units Dilution Factor
ı		•	•	•	r Lab Flag
C	C	C	C	C	Validation I
Yes	Yes	Yes	Yes	Yes	Reportable

Type of validation	Full:X Limited:	Project Number:_MC45838A
REVIEW OF V	OLATILE PETROLEU	M HYDROCARBON (VPHs) PACKAGE
validation actions. This more informed decisio were assessed accord precedence METHO: HYDROCARBONS (VF (2004). Also the general Support Section. The Common section is a section of the se	document will assist the nand in better serving ing to the data validation FOR THE DETECT), Massachusetts Depral validation guidelines	ile organics were created to delineate required reviewer in using professional judgment to make the needs of the data users. The sample results on guidance documents in the following order of ERMINATION OF VOLATILE PETROLEUM artment of Environmental Protection, Revision 1.1 promulgated by the USEPA Hazardous Wastes ation actions listed on the data review worksheets is otherwise noted.
The hardcopied (labo received has been revi review for SVOCs inclu	ewed and the quality cor	st_Laboratories data package ntrol and performance data summarized. The data
Field duplicate No.:	1	Sample matrix:Soil
X Data Complet X Holding Times N/A GC/MS Tunin N/A Internal Stand X Blanks X Surrogate Re X Matrix Spike/I	ard Performance	X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits
Overall Comm (C5_to_C12_Aliphatics	ents: _Volatiles ;_C9_to_C10_Aromatics	_by_GC_by_Method_MADEP_VPH,_REV_1.1
Definition of Qualifiers:		
J- Estimated resulu- Compound not R- Rejected data UJ- Estimated north Reviewer: Reviewer: Date: 06/13/2016	detected	

	Criteria were not	All criteria were metx met and/or see below
I. DATA COMPLETNE A. Data Packago		
MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
B. Other		Discrepancies:

All criteria were met	_X
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLED	EXTRACTED	ANALYZED	
	1 I		
nles analyzed	within method red	commended holdir	na time
<u> </u>		John Honged Holdin	ig time
	oles analyzed	oles analyzed within method re	oles analyzed within method recommended holdin

Criteria

Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

Cooler temperature (C	Criteria: 4 <u>+</u> 2 °C):	_4.8°C
-----------------------	-----------------------------	--------

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

All criteria were met _	X
Criteria were not met and/or see below	

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calib	ration:_	01/12/16_	
Dates of initial cal	ibration v	verification:_	_01/12/16_
Instrument ID nun	nbers:	GCA	В
Matrix/Level:	_ AQUE	OUS/MEDIL	IM

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
GCAB				<u> </u>
01/12/16	icv-5058-50	rt5.5-7	22.6	None
			·	
				

Note: Initial and initial calibration verification meet method specific requirements except in the cases described in this document. No action taken, professional judgment.

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9-C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects.

If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial cali	bration:	01/12/16_	
Dates of continuir	05/12/16_		
Dates of final cali	_05/12/16		
Instrument ID nur			
Matrix/Level:	_AQUEO	US/MEDIUM	

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
-	1			
			1	

Note: Continuing and final calibration verification meet method specific requirements.

A separate worksheet should be filled for each initial curve

	Criteria were no		
SIS RESULTS (Se	ections 1 & 2)		
nation problems. The the samples, incleans exist, all data whether or not the is an isolated occerned and after samples.	ne criteria for evanding trip, equipo a associated with there is an inherest currence not affe as suspected of	aluation of blanks apply only ment, and laboratory blanks h the case must be carefunt nt variability in the data for the acting other data. A Laborate	to lily the ory
in the blanks belo	w. High and low	levels blanks must be treat	ed
ID LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
ID LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
IIPMENT BLANKS	S ASSOCIATED	WITH THIS DATA	_ _
	he blank analysis action problems. To the samples, includes exist, all data whether or not the is an isolated occurrence run after sample rryover has occurred in the blanks below MATRIX MEET THE METHOMATRIX The acidified reagent imple or water sample or water sample or water sample.	he blank analysis results is to ration problems. The criteria for evaluation in the samples, including trip, equipment is an isolated occurrence not affect in the blanks below. High and low materials and low materials below. High and low materials below. High and low materials are cidified reagent water trip blanks are cidified reagent water trip blanks.	the blank analysis results is to determine the existence a lation problems. The criteria for evaluation of blanks apply only the samples, including trip, equipment, and laboratory blanks anks exist, all data associated with the case must be careful whether or not there is an inherent variability in the data for the is an isolated occurrence not affecting other data. A Laborate is run after samples suspected of being highly contaminated prover has occurred. In the blanks below, High and low levels blanks must be treated in the blanks below. High and low levels blanks must be treated by the blanks below. High and low levels blanks must be treated by the blanks below. High and low levels blanks must be treated by the blanks below. High and low levels blanks must be treated by the blanks below. High and low levels blanks must be treated by the blanks below. High and low levels blanks must be treated by the blanks below. High and low levels blanks must be treated by the blanks below, the blanks below, the blanks below, the blanks below blanks below blanks must be treated by the blanks below blanks below blanks must be treated by the blanks below blanks below blanks below blanks below blanks must be treated by the blanks below blanks blanks below blanks below blanks blanks blanks blanks below blanks bl

All criteria were met _	_X
Criteria were not met and/or see below	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

All criteria were met _	_X	
Criteria were not met and/or see below		_

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instantions aeditestance.

- (1) Obvious interference is present on the chromatogram (e.g., unresolved if the cause caonquise relaterationed, reanalyze the sample unless one of the following
 - (2) Percent moisture of associated soil/sediment sample is >25% and surrogate recovery is >10%; or
 - (3) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met _	_X
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

	PD of the compounds v				ACTION
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
_MS/MSD_reco	overies_and_RPD_with	in_laborator	y_contr	ol_limits	

		С	riteria wer	All criteria w re not met and/or s	ere metX see below
No action is taken or informed professional conjunction with other data. In those instart affect only the samp However, it may be a systematic proble associated samples.	al judgment, the QC criteria and ces where it leads the spiked, the determined through	ne data : and deter can be d qualificat ough the f	reviewer of mine the determined tion should MS/MSD r	may use the MS/ need for some qual that the results double limited to this esults that the labor	MSD results in alification of the of the MS/MSD s sample alone. oratory is having
2. MS/MSD – U	nspiked Compo	ounds			
List the concentration compounds in the un					
COMPOUND	CONCENTRA SAMPLE	ATION MS	MSD	%RPD	ACTION
				· · · · · · · · · · · · · · · · · · ·	
_					
Criteria: None specifi	ed, use %RSD	<u><</u> 50 as	professior	nal judgment.	
Actions:					
If the % RSD > 50, qualify the % RSD is not MSD, use profession	calculable (NC) due to	nondetec	t value in the sam	

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _	_X
Criteria were not met and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

List the %R of compounds which do not meet the criteria

LCS ID	COMPOUND	% R	QC LIMIT	ACTION	
LCS_RECOVERY_WITHIN_LABORATORY_CONTROL_LIMTS					
127		20			
				7 (San San San San San San San San San San	

Criteria:

- * Refer to QAPP for specific criteria.
- * The spike recovery must be between 70% and 130%. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative.

Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

		All criteria were metN/A Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE	PRECISION
Sampl	e IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No Field the best to		TAR ART			
used to assess pi	ecision. RI	anaiyzed with this PD within laborator	data package. MS/Nry and generally acce	ptable	control limits.

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq 5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were met _	_X
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target VPH
 Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o Coelution of the m- and p- xylene isomers is permissible.
 - o All surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

2. If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

		Criteria were no	All criteria were metX t met and/or see below
XII.	QUANTITATION LIM	ITS AND SAMPLE RESULTS	
The sa	ample quantitation eva	luation is to verify laboratory qu	uantitation results.
1.	In the space below, p	lease show a minimum of one	sample calculation:
MC45	838-2	2,3,4-trifluorotoluene	$RF = 4.100 \times 10^{5}$
FID			
[]=(1	8536704)/(4.015 x 10 ⁵	r)	
[]=4	5.21 ppb Ok		
MC45	838-2	Fluorobenzene	$RF = 4.401 \times 10^5$
PID			
[]=(2	.1945897)/(4.401 x 10 ⁵	·)	
[]=49	9.87 ppb Ok		
2. limit (M	MDLs). If dilutions performed	nat the results were above the d, were the SQLs elevated ac ples and dilution factor in the ta	ccordingly by the laboratory?
7/1	SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
-			
		ed and the results were abo fected compounds. List the affo	

EXECUTIVE NARRATIVE

SDG No:

MC45838A

Laboratory:

Accutest, Massachusetts

Analysis:

MADEP EPH

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

One (1) sample was analyzed for Extractable TPHC Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, upless otherwise noted.

are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. MS/MSD % recoveries and RPD outside the laboratory control limits.

MS/MSD results and RPD apply to unspiked sample. Unspiked sample

was from another project. No action taken.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

Juan 13, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC45838-2

Sample location: BMSMC Building 5 Area

Sampling date: 5/10/2016

Matrix: Soil

METHOD: MADEP EPH

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Ç11 - C22 Aromatics (Unadj.)	24000	ug/kg	1	-	υ	Yes
Ç9 - C18 Aliphatics	12000	ug/kg	1	-	U	Yes
Ç19 - C36 Aliphatics	12000	ug/kg	1	-	U	Yes
Ç11 - C22 Aromatics	24000	ug/kg	1	-	U	Yes

Type of validation	Full:X Limited:	Project Number:_MC45838A Date:05/10/2016_ Shipping date:05/10/2016_ EPA Region:2	
REVIEW OF EX	TRACTABLE PETRO	LEUM HYDROCARBON (EPI	Hs) PACKAGE
actions. This document decision and in better according to the data v FOR THE DETERMI Massachusetts Departivalidation guidelines pro	will assist the reviewer serving the needs of validation guidance docu NATION OF EXTRAGMENT OF ENVIRONMENTAL DESCRIPTION OF THE USEP STREET OF THE DESCRIPTION OF THE	organics were created to deline in using professional judgment to the data users. The sample ruments in the following order of CTABLE PETROLEUM HYDR Protection, Revision 1.1 (200 A Hazardous Wastes Support Sea review worksheets are from	o make more informed esults were assessed precedence METHOD COCARBONS (VPH), 4). Also the general ection. The QC criteria
		aboratories d I performance data summarized	
No. of Samples: Field blank No.: Equipment blank No.:		Sample matrix:	
X Data Complete X Holding Times N/A GC/MS Tuning N/A Internal Stands X Blanks X Surrogate Rec X Matrix Spike/M	3] ard Performance	X_ Laboratory Control SpikX_ Field DuplicatesX_ CalibrationsX_ Compound IdentificationX_ Compound QuantitationX_ Quantitation Limits	ns
Overall _Extractable_Petroleum (C9_to_C36_Aliphatics;	n_Hydrocarbons_by_GC _C11_to_C22_(Aromatic	_by_Method_MADEP_EPH,_RE	Comments: V_1.1
Definition of Qualifiers:			
J- Estimated result U- Compound not of R- Rejected data UJ- Estimated hone Reviewer:	detected		

		Criteria	All criteria were met _ were not met and/or see below _	_x
l.	DATA COMPLETNE A. Data Packag			
MISS	ING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED	
B.	Other		Discrepa	ncies:
	70340			

		Cr		criteria were metX et and/or see below
time of the sam	f this parameter i	collection to the tir		sults based on the holding and subsequently from the
Complete table	for all samples a	nd note the analys	sis and/or presen	vation not within criteria
SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	ACTION
,				
Samples	extracted and an	alyzed within me	thod recommende	ed holding time
<u>Criteria</u>				
	s samples must b ples must be coo			the time of collection. ollection.
Holding times:				
Samples of extract		ed within 14 days	of collection, an	d analyzed within 40 days
Cooler tempera	ture (Criteria: 4 ±	2 °C):4.8°C		
Actions: Qualify	positive results/n	ondetects as folk	ows:	
If holding times reviewer may ch If samples wer	noose to estimate	eeded, use profe positive results (oper temperature	ssional judgment J) and rejects nor	to qualify data. The data
		Crite		criteria were metX and/or see below

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:02/04/16							
Dat	Dates of initial calibration verification:02/04/13						
Inst	Instrument ID numbers:GCDE						
Mat	rix/Level:	_AQUEOUS/MEDIU	M				
DATE	LAB FILE	ANALYTE	CRITERIA OUT	SAMPLES			
	ID# RFs, %RSD, %D, r AFFECTED						
Initial cali	Initial calibration and initial calibration verification meet method specific requirements.						

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest. When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of
 interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36
 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID
 chromatogram. Tabulate the summation of the peak areas of all components in that
 fraction against the total concentration injected. The %RSD of the calibration factor
 must be equal to or less than 25% over the working range for the hydrocarbon range
 of interest.
 - o The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

Criteria- CCAL

 At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and at the

- end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:02/04/16							
Dates of continuing calibration verification:05/31/16							
Dates of final calibration verification:05/31/16							
Inst	Instrument ID numbers:GCDE						
Mat	Matrix/Level:_SOIL/AQUEOUS/MEDIUM						
DATE	DATE LAB FILE ANALYTE CRITERIA OUT SAMPLES ID# RFs, %RSD, %D, r AFFECTED						
Continuing and ending calibration verification meet method specific requirements.							

A separate worksheet should be filled for each initial curve

All criteria were met _	X
Criteria were not met and/or see below	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data. A Laboratory Method Blank must be run after samples suspected of being highly contaminated to determine if sample carryover has occurred.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
	LANKS MEET		OD SPECIFIC CRI	TERIA	- - -
Field/Trip/Equip	pment	LEVEL/	COMPOUND	CONCENTRATION	_
ANALYZED NO_TRIP/FIE	LD/EQUIPME	MATRIX ENT_BLANKS	S_ANALYZED_AS	UNITS SOCIATED_WITH_THIS_	 DA
			Criteria were	All criteria were met _ not met and/or see below	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

			All criteria were met	Х
Criteria	were	not	met and/or see below	

SURROGATE SPIKE RECOVERIES

CAMPIEID

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

ACTION

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

CURROCATE COMPOUND

SAMPLEID	SURKC	GATE COMPO	OIND		ACTION	
	S1	S2	S3	S4		
				_		SU
RROGATE_ST	ANDARD	S_RECOVERIES	S_WITHIN_	_LABORATORY	_CONTROL_	_LIMITS_
		344. 15				
						
		12				
		.				
S1 = o-Terpher	nyl 40-14	0%	S2 = 2-F	Fluorobiphenyl	40-140%	
S3 = 1-Chlorod				Bromonaphthale		
				-		
QC Limits (%)*	(Aqueous	/Solid)				
_LL_to_UL_	_40_to_14	040_to_140_	40_to	_14040_to_	_140_	
QC Limits* (So	lid)		_		_	
_LL_to_UL_	to	to	to	to		

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met	
Criteria were not met and/or see below _	_X

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

MS/MSD Recoveries and Precision Criteria

Sample ID:FA33755-1R M	/latrix/Level:	Soil
------------------------	----------------	------

List the %Rs, RPD of the compounds which do not meet the QC criteria.

The QC reported here applies to the following samples: MC45838-2

Method:	MADEP	EPH	REV	1.1
---------	-------	-----	-----	-----

Compound	FA33755-1R	Spike M	MS MS	Spike	MSD MSD	RPD	Limits
C11-C22 Aromatics	ug/kg Q	ug/kg u	Ig/kg %	ug/kg	ug/kg %		Rec/RPD
(Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	112000 129000 35800	33300 2	265000 172* ^a 254000 375* ^b 106000 158* ^a	34300		20 46* ° 32* °	40-140/25 40-140/25 40-140/25

- (a) Outside control limits due to possible matrix interference.
- (b) Outside control limits due to high level in sample relative to spike amount.
- (c) High RPD due to possible matrix interference and/or sample non-homogeneity.

Note: No action taken. MS/MSD % recoveries results and RPD apply to unspiked sample. Unspiked sample from another project.

All criteria were met _	_X
Criteria were not met and/or see below	

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

2. MS/MSD – Unspiked Compounds

List the concentrations of the unspiked compounds and determine the % RSDs of these compounds in the unspiked sample, matrix spike, and matrix spike duplicate.

COMPOUND	CONCENTRA SAMPLE	ATION MS MSD	%RPD	ACTION

Criteria: None specified, use %RSD ≤ 50 as professional judgment.

Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

	Criteria were not met and/or see below
VIII	LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS
Thi matrices.	s data is generated to determine accuracy of the analytical method for various
1.	LCS Recoveries Criteria
	List the %R of compounds which do not meet the criteria
LCS ID	COMPOUND % R QC LIMIT ACTION
LCS_R	ECOVERY_WITHIN_LABORATORY_CONTROL_LIMTS
Crit	Refer to QAPP for specific criteria. The spike recovery must be between 40% and 140%. Lower recoveries of n-nonane are permissible. If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative. RPD between LCS/LCSD must be < 25%.
Act	ions: ions on LCS recovery should be based on both the number of compounds that are side the %R and RPD criteria and the magnitude of the excedance of the criteria.
associated If the %R of affected and If more that	of the analyte is > UL, qualify all positive results (j) for the affected analyte in the samples and accept nondetects. of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the nalyte in the associated samples. an half the compounds in the LCS are not within the required recovery criteria, positive results as (J) and reject nondetects (R) for all target analyte(s) in the samples.
2. Fre	quency Criteria:
matrix)? Ye If no, the offect and	S analyzed at the required frequency and for each matrix (1 per 20 samples per es or No. lata may be affected. Use professional judgment to determine the severity of the qualify data accordingly. Discuss any actions below and list the samples affected. e actions below:

			A Criteria were not m		were met> see below _	
IX. FIELD/LA	BORATOR	Y DUPLICATE PR	ECISION			
Sample IDs:			_	Matrix:		
precision. These have more vari performance. It is	analyses n ability tha also expe	neasure both field an laboratory du cted that soil dupl	aken and analyzed and lab precision; plicates which m icate results will hav h collecting identica	therefore easures ve a grea	the results only labora ter variance	may atory than
COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
			his data package. M ithin laboratory and nits			-
					_	-
Criteria:						_
The project QAPP	' snould be	reviewed for proje	ct-specific information	on.		

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq 5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were metX
Criteria were not met and/or see below

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

	All criteria were metX Criteria were not met and/or see below
2.	If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.
3.	Breakthrough determination - Each sample (field and QC sample) must be evaluated for potential breakthrough on a sample specific basis by evaluating the % recovery of the fractionation surrogate (2-bromonaphthalene) and on a batch basis by quantifying naphthalene and 2-methylnaphthalene in both the aliphatic and aromatic fractions of the LCS and LCSD. If either the concentration of naphthalene or 2-methylnaphthalene in the aliphatic fraction exceeds 5% of the total concentration for naphthalene or 2-methylnaphthalene in the LCS or LCSD, fractionation must be repeated on all archived batch extracts.
	NOTE: The total concentration of naphthalene or 2- methylnaphthalene in the LCS/LCSD pair includes the summation of the concentration detected in the aliphatic fraction and the concentration detected in the aromatic fraction.
	Comments:Concentration_in_the_aliphatic_fraction_<_5%_of_the_totalconcentration_for_naphthalene_and_2-methylnaphthalene
4.	Fractionation Check Standard — A fractionation check solution is prepared containing 14 alkanes and 17 PAHs at a nominal concentration of 200 ng/µl of each constituent. The Fractionation Check Solution must be used to evaluate the fractionation efficiency of each new lot of silica gel/cartridges, and establish the optimum hexane volume required to efficiently elute aliphatic hydrocarbons while not allowing significant aromatic hydrocarbon breakthrough. For each analyte contained in the fractionation check solution, excluding n-nonane, the Percent Recovery must be between 40 and 140%. A 30% Recovery is acceptable for n-nonane.
	s a fractionation check standard analyzed? Yes? or No?
	Comments: Not applicable.

All criteria were met _	_X
Criteria were not met and/or see below	

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

MC45838-2MS

o-terphenyl

RF = 102,400

[] = (1535014)/(102,400)

[] = 14.99 ppm Ok

Blank Spike

2-fluorobiphenyl

RF = 92,230

[] = (1336918)/(92,230)

[] = 14.50 ppm Ok

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	W=0.5	
2 22		
	-	100

lf	dilution	was	not	performed,	estimate	results	(J)	for	the	affected	compounds.	List	the
af	affected samples/compounds:												